
Shell Scripting

UDIT-Research CyberInfrastructure (IT-RCI)

1

Outline
● Shell
● Bash script layout
● Variables
● Bash constructs: conditions, loops
● Command substitution
● I/O redirection
● Subroutines
● Advanced substitution

2

Examples
● Data analysis directly from the shell

3

Examples
● You performed 100 runs of a program

○ You varied two parameters a and b for each run
○ Each run is performed in a separate directory named test_a_b
○ For each run and in each directory, there are:

■ an input file named input.txt
■ an output file named output.txt
■ intermediate state files, named as dump.step1, dump.step100,

etc.
● You need to:

○ save all the input and output files for record keeping purposes
■ name the files as input_a_b.txt and output_a_b.txt

○ extract certain data from the output file of each run for analysis, or
benchmarking the run time

4

Examples
● Type similar commands manually in terminal for 100 times?

● Write a script to perform the tasks

$ cp ./test22_6/input.txt ./data_bak/input_22_6.txt
$ cp ./test42_26/input.txt ./data_bak/input_42_26.txt
$...

5

The Shell
What is a shell?
● a user program designed to read commands and execute programs.
● programming language interpreter
● features

○ defined variables
○ processes run in a shell
○ directory locations
○ shell levels
○ options

Bash Shell (bash)
- a widely used shell on Linux.
- different shells have different syntax and built-in functions.
- this workshop will be based on the bash shell. bash: Bourne Again SHell

6

The Shell

$ echo $SHELL
/bin/bash

$ ps $$
 PID TTY STAT TIME COMMAND
 61651 pts/13 S 0:00 /bin/bash -il

$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash
/bin/tcsh
/bin/csh
/usr/bin/tmux

find current shell type find available shells on the system

7

What is shell scripting?
Shell Scripting - writing a series of commands in a text file

Benefits

automation avoid repetitive typing

efficiency combine multiple commands into a single workflow

reproducibility easily re-run complex tasks with the same settings

customization create your own tools tailored to your research needs

8

An example
● The stat command display file status, write a bash script to display

the file size and last access time

$ stat examplefile1
 File: ‘examplefile1’
 Size: 13 Blocks: 1 IO Block: 1048576 regular file
Device: 2dh/45d Inode: 51877 Links: 1
Access: (0644/-rw-r--r--) Uid: (3241/ bdeng) Gid: (900/everyone)
Access: 2024-10-22 19:07:15.519228010 -0400
Modify: 2024-10-20 16:28:26.383164892 -0400
Change: 2024-10-20 16:28:26.383164892 -0400
 Birth: -

9

Bash script layout
This script takes a file name as an argument
and display the file's size and last access
time
FILE="$1"

Get the file's info using the stat command
FILE_SIZE=$(stat -c%s $FILE)
FILE_ACCESS_T=$(stat -c%x $FILE)

Print the information
echo "File Name: $FILE"
echo "File Size: $FILE_SIZE bytes"
echo "Last accessed: $FILE_ACCESS_T"

display_file_info0.sh

● A plain text file with a collection of
commands

● Each line of text in the script:
○ can have leading and trailing

whitespace
○ is a comment if starts with #
○ contains all of or a portion of

a shell command
■ can be continued on the

next line if it ends with \

10

Bash script layout
● To execute the script as a bash script:

$ bash display_file_info0.sh examplefile1
File Name: examplefile1
File Size: 13 bytes
Last accessed: 2024-10-20 16:28:26.382164865 -0400

11

Bash script layout
#!/bin/bash

This script takes a file name as an argument
and display the file's size and last access
time
FILE="$1"

Get the file's info using the stat command
FILE_SIZE=$(stat -c%s $FILE)
FILE_ACCESS_T=$(stat -c%x $FILE)

Print the information
echo "File Name: $FILE"
echo "File Size: $FILE_SIZE bytes"
echo "Last accessed: $FILE_ACCESS_T"

display_file_info1.sh

● Adding shebang, “#!” (aka. sha-bang,
sh-bang, etc.) at the head of a script to
specify the interpreter

● To make the bash script executable:

$ ls -l display_file_info1.sh
-rw-r--r-- 1 bdeng everyone …

$ chmod +x display_file_info1.sh

$ ls -l display_file_info1.sh
-rwxr-xr-x 1 bdeng everyone …

$./display_file_info1.sh examplefile1
File Name: examplefile1
File Size: 13 bytes
Last accessed: 2024-10-20 16:28:26.382164865
-0400

12

● Use other interpreters

● Another variant
○ /usr/bin/env search for bash or

python in the user’s
environment, making it more
portable

Additional Shebang examples
#!/bin/sh
#!/usr/bin/python
#!/usr/bin/awk -f

#!/usr/bin/env bash
#!/usr/bin/env python

13

Variables

#!/bin/bash

This script takes a file name ...
FILE="$1"

Get the file's info ...
FILE_SIZE=$(stat -c%s $FILE)
FILE_ACCESS_T=$(stat -c%x $FILE)

Print the information
echo "File Name: $FILE"
echo "File Size: $FILE_SIZE bytes"
echo "Last accessed: $FILE_ACCESS_T"

● A variables is a placeholder for its value
● Variables help generalize a program

14

Variables
● Use the assignment operator (=) to create a variable

○ NO space before or after
● Use ($) to dereference a variable
● Variable names are case sensitive

$ var1=apple
$ Var1=pineapple
$ echo $var1
apple
$ echo $Var1
pineapple

15

Scope of variables
● Ordinary variables

○ defined within a single shell and are not propagated to child shells,
subshells or parent shells

● Exported variables
○ becomes part of the environment of current shell
○ extended to any child processes, including child shells and

subshells
● When running a bash script, it’s running in its own environment in a

subshell

16

Scope of variables

$ VAR_P1=notExported
$ export VAR_P2=exported
$./program1.sh &
[1] 16868
$
exported
$ echo $VAR_C1 $VAR_C2

$ ps --forest
 PID TTY TIME CMD
122438 pts/16 00:00:01 bash
 16868 pts/16 00:00:00 _ program1.sh
 16869 pts/16 00:00:00 | _ sleep
 16992 pts/16 00:00:00 _ ps

#!/bin/bash
echo
echo $VAR_P1 $VAR_P2
VAR_C1=23
export VAR_C2=24
sleep 60

program1.sh

17

Executing script in current shell
● Script can also be executed in the current shell without starting a new

process with its own environment using the source command or the
dot (.) operator

$./display_file_info1.sh examplefile1
File Name: examplefile1
File Size: 13 bytes
Last accessed: 2024-10-20 16:28:26.382164865 -0400
$ echo $FILE

$ source display_file_info1.sh examplefile1
File Name: examplefile1
File Size: 13 bytes
Last accessed: 2024-10-20 16:28:26.382164865 -0400
$ echo $FILE
examplefile1

$. display_file_info1.sh examplefile1

18

Subshells
● Surround one or more commands with parenthese

○ the commands will be executed in a subshell

#!/bin/bash
VAR_C1=23
(export VAR_C2=24; VAR_C3=25)
echo $VAR_C1 $VAR_C2 $VAR_C3

program2.sh

$./program2.sh
23

19

Variables - Numeric
● By default, bash variables are strings

● The declare command can be used
to modify a variable property as integer
(declare -i) or other types
○ arithmetic operations can be

performed on integer variables

● Variables NOT declared as integer type
are converted during arithmetic
evaluation

●

$ a=3
$ b=a+1
$ echo $b
a+1
$ c=$a+1
$ echo $c
3+1

$ declare -i x
$ declare -i y
$ x=3
$ y=x+1
$ echo $y
5

$ ax1=a+x
$ echo $ax1
a+x
$ ax2=$((a+x))
$ echo $ax2
7

arithmetic operators

+ addition

- subtraction

* multiplication

/ division

% modulo

** exponentiation

20

Special variables
● Positional parameters

○ arguments passed to the script from the command line: $1,
$2, $3… $9

○ after $9 use brackets: ${10}, ${11}
○ $0 is the script itself
○ the shift command reassigns the positional parameters

■ $1 ← $2, $2 ← $3, $3 ← $4, etc.
■ $0 does not change

21

Special variables
● Additional special variables

$* all command line arguments $? exit status of last program

$@ all command line arguments $$ pid of this program

$# number of command line arguments $! pid of last-started background job

$_ starts as full path to script, changes to last command argument list

$* and $@ behave differently when inside double quotes

22

#!/bin/bash

echo "The full path to this script is $_"
echo "This script is named $0 and is running with pid $$"
echo "You provided $# arguments"

echo "What does \$ equal now: $_"

echo "The first two arguments are $1 and $2"

echo "The full argument list: $@"

echo "A printf with \$*:"
printf " %s\n" "$*"

echo "A printf with \$@:"
printf " %s\n" "$@"

program3.sh

./program3.sh "a b c" "d e f" g h i
The full path to this script is
./program3.sh
This script is named ./program3.sh and is
running with pid 25156
You provided 5 arguments
What does $ equal now: You provided 5
arguments
The first two arguments are a b c and d e f
The full argument list: a b c d e f g h i
A printf with $*:
 a b c d e f g h i
A printf with $@:
 a b c
 d e f
 g
 h
 i

23

Quoting
● In Bash, Quotes are used to define string literals
● Single Quotes ('')

○ everything is considered as string literal
● Double Quotes (" ")

○ everything except special characters (e.g. $, \)
● Escape(\)

○ quoting single characters, the character after \ is treated literally

#!/bin/bash
name=Alice

echo 'Hello, $name'

echo "Hello, $name"

echo "She said, \"Hello!\""

Hello, $name
Hello, Alice
She said, "Hello!"

What’s the output?

24

Quoting

Feature Single Quotes (') Double Quotes (")

Interpretation Literal (no expansion) Variable expansion & command
substitution

Special Characters Treated literally Interpreted (e.g., $, \, `)

Escape Characters Literal Can escape certain characters

25

Quoting - additional notes
● Type the last echo command in the previous example directly in

command line will result in error
○ "!" is interpreted as a history command in command line, but

disabled in bash

● How to create the string:
○ Alice’s dog’s name is Hachi

$ echo "She said, \"Hello!\""
-bash: !\"": event not found

$ echo 'Alice's dog's name is Hachi'
Alices dogs name is Hachi

$ echo 'Alice'\''s dog'\''s name is Hachi'
Alice's dog's name is Hachi

26

if constructs

if expr; then
 actions
else
 actions
fi

● General formats

if expr; then
 actions
fi

if expr; then
 actions
elif expr2; then
 actions
elif expr3; then
 actions
else
 actions
fi

if expr; then
 actions
else
 if expr2; then
 actions
 elif expr3; then
 actions
 fi
fi

if expr
then
 actions
fi

if expr; then actions; fi

27

Evaluating the conditional expression
● The if constructs tests the exit status of an expression that evaluate to 0 = true

(non-0 = false)
○ In Linux, every command returns an exit status

■ a successful command returns a 0
■ an unsuccessful one returns a non-0 value, an error code

○ Most programming languages equate 0 with false, and non-0 with true

#!/bin/bash

x=0

if [$x -eq 0]; then
 echo "x equals 0"
fi

if [$x -eq 1]; then
 echo "x does not equal 0"
fi

$ [x -eq 0]
$ echo $?
0

$ [x -eq 1]
$ echo $?
1

28

Conditionals - tests
● []

○ alias for the test command
○ spaces are required around the operators

● [[]]
○ extended test. Introduced in newer versions of Bash
○ spaces are required around the operators
○ supports additional string and arithmetic operations, logical

operators (&&, ||)

if [[$x > 5 && $y < 10]]; then …

if ["$x" -gt 5 -a "$y" -lt 10]; then …

29

Arithmetic tests using (())
● The (()) construct expands and evaluates an arithmetic

expression.
○ If the expression evaluates as zero, it returns an exit status of 1, or

"false".
○ A non-zero expression returns an exit status of 0, or "true".

$ ((0))
$ echo $?
1

$ ((1))
$ echo $?
0

$ if ((0)); then echo "true"; else echo "false"; fi
false
$ if ((1)); then echo "true"; else echo "false"; fi
true

$ if ((5 > 2)); then echo "true"; else echo "false"; fi
true
$ if ((5 - 3 > 2)); then echo "true"; else echo "false"; fi
false

30

Exercise

#!/bin/bash

if aabbcc; then
 echo "condition is True"
else
 echo "condition is False"
fi

if aabbcc is not an environmental variable
or command?

What happens when executing the following scripts?

#!/bin/bash

if [aabbcc]; then
 echo "condition is True"
else
 echo "condition is False"
fi

$./prog4_1.sh
./prog4_1.sh: line 3: aabbcc: command not
found
condition is False

$./prog4_2.sh
condition is True

31

What to compare

string comparison

a = b equal

a != b not equal

a > b greater than
(lexicographically)

a < b less than
(lexicographically)

a -eq b equal to

a -ne b not equal

a -gt b greater than

a -ge b greater than or equal to

a -lt b less than

a -le b less than or equal to

integer comparison

32

What to compare
file test operators

-f a path exists and is a file

-d a path exists and is a directory

-e a path exists

-r a path is readable by user

-w a path is writable by user

-x a path is executable by user

logical operators

expr1 -a expr2 AND

expr1 -o expr2 OR

!expr1 logical negation

(expr1) compound grouping

33

Conditionals
#!/bin/bash

This script takes a file ...
FILE="$1"

if [-f "$FILE"]; then
 # Get the file's info ...
 FILE_SIZE=$(stat -c%s $FILE)
 FILE_ACCESS_T=$(stat -c%x $FILE)

 # Print the information
 echo "File Name: $FILE"
 echo "File Size: $FILE_SIZE bytes"
 echo "Last accessed: $FILE_ACCESS_T"
else
 echo "Error: File $FILE does not exist."
 exit 1
fi

display_file_info2.sh
● Add a condition to check if the file exist

○ if file exist, display its information
○ otherwise, print error message and exit

$./display_file_info2.sh examplefile1
File Name: examplefile1
File Size: 13 bytes
Last accessed: 2024-10-20
16:28:26.382164865 -0400

$./display_file_info2.sh examplefile2
Error: File examplefile2 does not exist.

34

case statements

#!/bin/bash
echo "Enter a character:"
read char
case "$char" in
 [a-z])
 echo "You entered a lowercase letter."
 ;;
 [A-Z])
 echo "You entered an uppercase letter."
 ;;
 [0-9])
 echo "You entered a digit."
 ;;
 *)
 echo "You entered a special character."
 ;;
esac

● Many-valued branch table
○ more concise, clear than a lengthy if..elif..else..fi

case "$variable" in
 pattern1)
 # Code block for pattern1
 ;;
 pattern2)
 # Code block for pattern2
 ;;
 patternN)
 # Code block for patternN
 ;;
 *)
 # Default case (optional)
 ;;
esac

35

Loops
● Loops allow a sequence of statements to be executed zero or more times

(as long as the loop control condition is true)
○ iterate over a set of items
○ iterate a fixed number of times
○ iterate until a condition is satisfied

36

FOR loops
● General format

● C-style constructs

for arg in [list]
do
 actions
done

for arg in [list]; do
 actions
done

for arg in [list]; do actions; done

for ((initialization; condition; increment/decrement))
do
 # commands to execute
done

37

Loops - Set of items
● Given a string containing words separated by whitespace, perform a

sequence of statements for each word

$ for w in a b c "d e f" g "h i j"; do echo $w; done
a
b
c
d e f
g
h i j

38

Loops - Set of items
#!/bin/bash
display file info of input files

for FILE in "$@"; do
 if [-f "$FILE"]; then
 # Get the file's info ...
 FILE_SIZE=$(stat -c%s $FILE)
 FILE_ACCESS_T=$(stat -c%x $FILE)

 # Print the information
 echo "File Name: $FILE"
 echo "File Size: $FILE_SIZE bytes"
 echo "Last accessed: $FILE_ACCESS_T"
 else
 echo "Error: File $FILE does not exist."
 fi
 echo
done

display_file_info3.sh

● display the file information for more than one input files

$ touch examplefile3
$./display_file_info3.sh examplefile1 examplefile2
examplefile3
File Name: examplefile1
File Size: 13 bytes
Last accessed: 2024-10-21 09:28:40.977299083 -0400

Error: File examplefile2 does not exist.

File Name: examplefile3
File Size: 0 bytes
Last accessed: 2024-10-21 11:54:11.607417810 -0400

39

Brace expansion
● Generate a set of strings

○ simple list: {item1,item2,item3}
○ a sequence: prefix{x..y..z}suffix

■ x,y are integers or single characters
■ z is an optional increment

$ echo {apple,orange}
apple orange
$ mkdir project/{src,bin,docs}
$ echo my{in,out}put.txt
myinput.txt myoutput.txt
$ echo {1..5}
1 2 3 4 5
$ echo {1..5..2}
1 3 5
$ echo {5..1}
5 4 3 2 1
$ echo {a..d}
a b c d
$ echo {a..d..2}
a c

$ for i in {1..3};do filename=run$i.input; echo $filename; done
run1.input
run2.input
run3.input

40

WHILE loop
● General format

while [condition]
do
 actions
done

while [condition]; do
 actions
done

while [condition]; do actions; done

while ((condition))
do
 actions
done

41

WHILE loop
#!/bin/bash

counter=1
while [$counter -le 5]
do
 echo "Counter: $counter"
 ((counter++)) # Increment the counter
done

#!/bin/bash

echo "Trying to ping hostname.domain.net …"
ping -c 1 hostname.domain.net > /dev/null 2>&1
while [$? -ne 0]; do
 sleep 5
 echo "Trying to ping hostname.domain.net …"
 ping -c 1 hostname.domain.net > /dev/null 2>&1
done
echo "was able to ping hostname.domain.net …"

● loop run a set number of
times

● loop can also run indefinitely
or until a condition is met

42

WHILE loop
#!/bin/bash

file="input.txt"

Check if the file exists
if [[! -f $file]]; then
 echo "File $file not found!"
 exit 1
fi

Read the file line by line using a while loop
while IFS= read -r line; do
 # Process each line
 echo "Read line: $line"
done < "$file"

● use while loop to read a text
file line by line

43

UNTIL loop

#!/bin/bash

echo "Trying to ping hostname.domain.net …"
ping -c 1 hostname.domain.net > /dev/null 2>&1
until [$? -eq 0]; do
 sleep 5
 echo "Trying to ping hostname.domain.net …"
 ping -c 1 hostname.domain.net > /dev/null 2>&1
done
echo "was able to ping hostname.domain.net …"

● Exit loop when expression is true

44

Command Substitution
● Reassigns the output of command(s)
● Two types of syntax:

○ $(command)
■ recommended
■ easy to nest substitution

○ `command`
■ must escape certain characters
■ hard to nest substitution

$ echo ls
ls

$ $(echo ls)
display_file_info0.sh display_file_info2.sh examplefile1
display_file_info1.sh display_file_info3.sh examplefile3

45

$ cat tests_list.txt
Test18
Test88
Test96
Test05
$ mkdir $(cat tests_list.txt)
$ ls -ld *
drwxr-xr-x 2 bdeng everyone 2 Oct 22 19:35 Test05
drwxr-xr-x 2 bdeng everyone 2 Oct 22 19:35 Test18
drwxr-xr-x 2 bdeng everyone 2 Oct 22 19:35 Test88
drwxr-xr-x 2 bdeng everyone 2 Oct 22 19:35 Test96
-rw-r--r-- 1 bdeng everyone 49 Oct 22 19:28 tests_list.txt

$ echo $(ls -s $(cat tests_list.txt))
Test05: total 0 Test18: total 0 Test88: total 0 Test96: total 0

$ mkdir `cat tests_list.txt`
$ echo `ls -s \`cat tests_list.txt\``

46

I/O redirection review
● Three communication channels for a process

○ stdin - standard input - file descriptor: 0
○ stdout - standard output - file descriptor: 1
○ stderr - standard error - file descriptor: 2

Command

stdout

stderr
stdin

47

I/O redirection review
● redirecting stdin

○ command < file
● redirecting stdout to a file

○ command > file
● redirecting stderr to a file

○ command 2> file
● redirecting stdout and stderr

○ command &> file
○ command > file 2>&1
○ command > file 2> errfile

● redirecting all
○ command < infile > file 2> errfile

48

I/O redirection review
● Use >> for appending operation
● Order is important

○ command > file 2>&1

○ command 2>&1 > file

1 → file

2 → terminal

1 → file

2 → file

1 → terminal

2 → terminal

1 → terminal

2 → terminal

1 → terminal

2 → terminal

1 → file

2 → terminal

49

Pipes
● Use output of one program as input for another

○ write to a temporary file: command > tmpfile
○ read from the temporary file: command2 < tmpfile
○ remove the temporary file: rm tmpfile

Command1 stdout

stderr

stdin

Command2 stdout

stderr

stdin

50

Pipes
● Use |

○ command1 | command2
○ No temporary files written to disk

Command1

stderr

stdin Command2 stdout

stderr

$ ls | grep "display_file"

51

● e.g. Storm related events in 2017 saved in a csv file
StormEvents_2017.csv
○ perform some quick data analysis

52

$ # find events in Delaware
$ $ grep DELAWARE StormEvents_2017.csv | head -n 3
120480,722023,DELAWARE,2017,October,Strong Wind,2017-10-30 ...
111521,665521,DELAWARE,2017,January,Winter Storm,2017-01-07 ...
111521,665522,DELAWARE,2017,January,Winter Storm,2017-01-07 …

$ # find events in Delaware in July
$ grep DELAWARE StormEvents_2017.csv | grep July | head -n 3
117045,704171,DELAWARE,2017,July,Heavy Rain,2017-07-23 ...
117049,704202,DELAWARE,2017,July,Heavy Rain,2017-07-29 ...
116251,701615,DELAWARE,2017,July,Heavy Rain,2017-07-07 …

$ # count unique events
$ grep -v "EpisodeID" StormEvents_2017.csv | cut -d',' -f6 StormEvents_2017.csv | sort | uniq -c |
head
 13 Astronomical Low Tide
 27 Avalanche
 356 Blizzard
...

53

Pipes
● Duplicate output across two files

○ command1 | tee file
○ log output, debugging intermediate results

$ ls | tee list.txt | grep "display_file"

$ make 2>&1 | tee build.log

54

Pipes
● Special files to use in redirection

● Named pipes

/dev/null Discards all data written to it. Reading from it
produces nothing (EOF).

/dev/zero Produces an endless stream of null (zero) bytes.
Used to create zero-filled files or initialize memory.

/dev/random
/dev/urandom

provides random data

/dev/tty Refers to the current terminal.

55

Arrays
● Newer versions of bash support 1d arrays
● declare -a arrayname
● Can store both strings and numbers
● Each element can be accessed using an index, starting from 0

○ ${arrayname[index]}
● delete array

○ delete an element: unset arrayname[index]
○ delete the entire array: unset arrayname

● getting the number of elements:

$ fruits=("apple" "banana")
$ echo ${fruits[0]}
apple
$ echo ${fruits[2]}

$ fruits[2]="cherry"
$ echo ${fruits[2]}
cherry
$ echo ${fruits[*]}
apple banana cherry

56

Arrays
$ fruits=("apple" "banana")
$ echo ${fruits[0]}
apple
$ echo ${fruits[2]}

$ fruits[2]="cherry"
$ echo ${fruits[2]}
cherry
$ echo ${fruits[*]}
apple banana cherry

$ for w in "${fruits[@]}";do echo $w;done
apple
banana
cherry

● loop over array values
○ can also loop over array indices

57

Arrays
fruits[3]="cherry pie"
$ for w in ${fruits[@]};do echo $w;done
apple
banana
cherry
cherry
pie

for w in "${fruits[@]}";do echo $w;done
apple
banana
cherry
cherry pie

58

Subroutines
#!/bin/bash
Function to calculate the square of a number
square() {
 local num=$1
 if ((num < 10)); then
 echo $((num * num))
 return 0
 else
 return 1
 fi
}

Main part of the script
Call the square function and store the result
num=$1
result=$(square $num)

if [$? -eq 0]; then

 echo "The square of $num is: $result"
else
 echo "unable to compute"
fi

● encapsulate often-used command
sequences in a sub-program

● Used echo to return actual values
● Used return to return exit status

$./func2.sh 4
The square of 4 is: 16
$./func2.sh 44
unable to compute

59

Advanced expansion
● Variable names can also be enclosed within curly braces, e.g.

${VARNAME}
● Curly braces allow for additional logic and transformation w.r.t. the

variable’s value

60

Advanced expansion
● Indirect expansion
● the value of $VAR is itself

the name of a variable
● substitute the value of that

variable

$ echo $PATH
/home/3241/.local/bin:/home/3241/bin

$ VAR=PATH

$ echo ${!VAR}
/home/3241/.local/bin:/home/3241/bin

● Names of variables whose
name start with “VAR”

$ VERBOSE=1
$ VARIABLE=1
$ echo ${!V*}
VAR VARIABLE VERBOSE
$ echo ${!VAR*}
VAR VARIABLE

61

Advanced expansion examples
● ${parameter:-default}

○ Expands to default if parameter is unset or null.
● ${parameter:?message}

○ Assigns default to parameter if it’s unset or null.
● ${parameter:offset:length}

○ Extracts a substring starting at offset and up to
length characters.

$ name=""
$ echo ${name:-"Guest"}
Guest

$ unset name
$ echo ${name:?"Variable name is not set"}
-bash: name: Variable name is not set

$ str="Hello World"
$ echo ${str:6:5}
World

62

When not to use shell scripts
● Resource-intensive tasks
● Heavy-duty math operations
● native support for multi-dimensional arrays
● need data structures
● need graphics
● Cross-platform portability required
● Extensive file operations required
● proprietary, closed-source applications

● Upcoming workshops
○ HPC Software Development and Installation: 10/31 @ 10

am-noon
● Past workshops

○ Introduction to Linux
○ Introduction to HPC
○ Getting Started with DARWIN
○ Introduction to Slurm
○ Shell Scripting

Upcoming Workshops

● Research Computing Office Hours
○ Time: Tuesdays and Wednesdays @ 11am – noon
○ Location: 002C Smith Hall, Conference Room or via Zoom.

● Research Software Engineering (RSE) Support For The College Of Arts
And Science (CAS)
○ Time: Tuesdays and Wednesdays @ 1pm – 2pm
○ Location: Room 110 Sharp Lab or Zoom

Office Hours

Thank you!

