Follow along with the examples..

UD IT Research Cyberinfrastructure

HPC Software
Development & Installation

HPC Software Development & Installation

Topics that will be covered:

e Software project kind & scope
e General organizational principles

e Compiled software projects
Simple Makefile infrastructure
GNU autoconf
CMake

Additional topics, time permitting:

e Python virtual environments

Software Project Kind & Scope

e Varying degrees of scale to programming projects
Tool programs
m From a shell or Perl script to extract key data from an output file..
m .to a multi-file Fortran or Python program that post-processes (via computation) data
from an output file

Software Project Kind & Scope

e Varying degrees of scale to programming projects
Tool programs
Code libraries
m From a simple Unix archive file (e.g. libcompute.a) containing compiled object code..
m .toadynamic shared library (e.g. libcompute.so) with a strong APl exposed via
header files.

e Many scripting (non-compiled) languages also have the concept of code
libraries
o Matlab .m files that add functions to the environment
o Python modules (e.g. see /usr/lib64/python2.6/site-packages on
Farber)
o Perl modules (e.g. see /usr/lib64/perl5 on Farber)
e Note that creating an API demands more planning and structure to a project

Software Project Kind & Scope

e Varying degrees of scale to programming projects
Tool programs
o Code libraries
m Fromasin An application program interface (API) is a set of

C I reReWeIIgEll routines, protocols, and tools for building software

header file [ESSIEEESLH

An API specifies how software components should
interact.

j compiled object code..
p APl exposed via

Software Project Kind & Scope

e Varying degrees of scale to programming projects
Tool programs
Code libraries
Software suites
m Containing a mix of tools and libraries

Software Project Kind & Scope

e Varying degrees of scale to programming projects
e A project that starts at the simpler end of the scale can evolve toward the
complex end..

e _orit could move between the types
a collection of tool programs = library
a very complex tool program = software suite

The Software Build Process

The Software Build Process

The Software Build Process

source code

ﬁ header files
preprocessor
LN

¢
preprocessed
source code

The Software Build Process

source code

ﬁ header files
preprocessor
LN

¢
preprocessed
source code

assembly code

The Software Build Process

p gcc -E .. m
header files
preprocessor
source code

¢
preprocessed
source code

object (machine
assembler 2 ¢)
code

assembly code

The Software Build Process

p gcec -E .. m
header files “
preprocessor

source code other object code

preprocessed
source code

assembler

assembly code

libraries

object (machine)
code

executable

The Software Build Process: An Exercise

e Note the gcc commands cited on the previous slide
o Output the preprocessed source and go no further..
o Output the assembly and go no further..

The Software Build Process: An Exercise

Note the gcc commands cited on the previous slide
o Output the preprocessed source and go no further..
o Output the assembly and go no further..

Examine the preprocessed (i) and assembly (.s) files
Still textual program code

Examine the object code with objdump -d exercise.o
Examine the executable with readelf -a exercise
Explore the other options available with these utilities (man pages)

The Software Build Process: An Exercise

| Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke's Third Law

Examine the = o WItN readelf -a exercise
Explore the other options available with these utilities (man pages)

The Software Build Process: An Exercise

For a scientist, any technology that
8 appears magical should prompt
E?ﬁ curiosity and careful investigation.

Frey's Corollary to the Third Law

Examine the = o WItN readelf -a exercise
Explore the other options available with these utilities (man pages)

The Software Build Process

a header files
preprocessor
source code

preprocessed
source code

t main

The Software Build Process

gcec -E .. m
header files
preprocessor

source code

preprocessed
source code

e Note that the code is now specific to the CPU on which you are building the
software — the target ISA

The Software Build Process

main

assembler

General Organizational Principles

General Organizational Principles

e Any OS to which you've been exposed probably has the same solution to

organizing files: a directory tree
Top-most directory is most generic, sub-directory levels become increasingly specific

General Organizational Principles: Installed Software

° Top directory contains all versions or variants of the installed software
o version: a frozen, point-in-time snapshot of software, often with a
monotonically-increasing tiered numbering scheme (e.g. 4.5.1 or 2024.01)

variant: a copy of a software version produced using aLtemaUve parameterization or build
properties (e.g. 4.5.1 built with Intel versus GCC compilers)

General Organizational Principles: Installed Software

e Top directory contains all versions or variants of the installed software
e FEach version or variant is a directory ideally structured similarly to the Linux

file system
in directory to hold executable programs
or 1ibe4) directory to hold archive or shared libraries, Python site packages, etc.
je directory to hold header files (e.g. for an API)
src if there is source code accompanying the version/variant
m For software with multiple sources (e.g. library dependencies) unpack each source
package under this directory
m Notable exception is virtualized build systems (some autoconf, CMake)
e Multiple versions/variants can be built in a single source directory outside the
version/variant directory itself

General Organizational Principles: Source Code

e Code is comprised of one or more files (be they source code or interpreted
script, etc)

e Jop directory is the project container
Typical software project contains source code, documentation, helper scripts,
configuration samples, examples
m Create a directory for each that is required

General Organizational Principles: Source Code

Code is comprised of one or more files (be they source code or interpreted
script, etc)
Top directory is the project container

e On our HPC systems we like to use "s-r-c" as the directory containing source
code

e Content (or presence) of docs and examples will depend on each individual
project

Building Software: the make Utility

Building Software: the make Utility

e Each source file depends on zero or more header/module files
o When a dependency changes, the source file itself has effectively changed
y gram depends directly on my
.any change to printargv.c implies change tomy ¢ am

e (C, C++languages provide API information via header files; Fortran 90 and
later use module files for this purpose

Building Software: the make Utility

e Each source file depends on zero or more header/module files
o When a dependency changes, the source file itself has effectively changed
] 1y _program depends directly ONmy ¢ gram.cC and printargv.c..
.any change to printargv.c implies change to my program

The product named my programdepends on ingredients
my_program. cand printargv.c

e A Makefile contains variable definitions and rules that combine product,
ingredients, and a recipe to create the product from the ingredients.

Building Software: the make Utility

Each source file depends on zero or more header/module files
o When a dependency changes, the source file itself has effectively changed
y am depends directly ONmy am.c and printa
m .anychangetoprint c implies change to my

When a dependency changes, the product my programis
generated with this recipe: compile the two source files and

link the object code to produce an executable named
my_program

Building Software: the make Utility

e Each source file depends on zero or more header/module files
o When a dependency changes, the source file itself has effectively changed
y gram depends directly on my
.any change to printargv.c implies change tomy ¢ am

Building Software: the make Utility

e Each source file depends on zero or more header/module files
o When a dependency changes, the source file itself has effectively changed
3 am depends directly on my V.C
m .anychangetoprint 5

The touch command alters the modification timestamp on a
file — now printargv.chas "changed"

e Why does "changing" printargv.h not trigger a rebuild of the program?

Building Software: the make Utility

e The make utility is generally useful — not just for compiling code

e What happens when | execute the "make" command in this otherwise-empty
directory?

Building Software: the make Utility

The make utility is generally useful — not just for compiling code

First rule is the default rule for the makefile

Building Software: the make Utility

e The make utility is generally useful — not just for compiling code

° Removing the manual.txt file — the default product — what will happen when |
execute "make?"

Building Software: the make Utility

e The make utility is generally useful — not just for compiling code

e No need to regenerate the two component .txt files, so the two files are
concatenated to produce manual.txt

Building Software: the make Utility

e The make utility is generally useful — not just for compiling code
o Variables, automatic variables, and patterned rules simplify a Makefile

(MAN_CMD) $* > $@

Building Software: the make Utility

e The make utility is generally useful — not just for compiling code
o Variables, automatic variables, and patterned rules simplify a Makefile

~at Makefile

Use variables for repeated expressions, lists

Applies to products whose name match the
pattern (something substituted for <)

Building Software: the make Utility

e The make utility is generally useful — not just for compiling code
o Variables, automatic variables, and patterned rules simplify a Makefile

cat Makefile

.txt

Automatic variables =
captured parts of the rule

Building Software: the make Utility

e Improving rebuild workload
o Retain compiler output — object code — as intermediates used in linking

The product named my programdepends on ingredients
my program.o and printargv.o

The product named my program.odepends on
/'ngred/ents my program.c and printargv.h

Building Software: the make Utility

e Improving rebuild workload
o Retain compiler output — object code — as intermediates used in linking

The product named my programdepends on ingredients
my program.o and printargv.o

The product named my program.odepends on
/'ngred/ents my program.c and printargv.h

my_program.c my_program.o my_program

e What gets rebuilt when printargv.h has changed?

Building Software: the make Utility

e Improving rebuild workload
o Retain compiler output — object code — as intermediates used in linking

Building Software: the make Utility

Decrease repetition, increase readability
Use variables for long or repeated values in the Makefile text

Building Software: the make Utility

e Decrease repetition, increase readability
o Use variables for long or repeated values in the Makefile text

Bl \/ariable value is referenced using name inside
parentheses — $TARGET = $(T)ARGET

Building Software: the make Utility

e Decrease repetition, increase readability
Automatic variables yield components of the matched rule

Building Software: the make Utility

e Decrease repetition, increase readability
o Automatic variables yield components of the matched rule

B $@ - the product in the rule
$+ =allingredients in the rule

e Google for the term "makefile automatic variables" for more information on
what's available

Building Software: the make Utility

Pattern-based rules
o Another means of avoiding repetition, increasing readability

e Automatic variables are absolutely necessary for pattern-based rules

Building Software: the make Utility

e Pattern-based rules
o Another means of avoiding repetition, increasing readability

Dependencies cited alone..

.matched with a pattern-based rule to build product
from ingredient(s)

Building Software: the make Utility

e Additional targets

Rules that effect other changes to the build products et al.

Building Software: the make Utility

e Additional targets

o Rules that effect other changes to the build products et al.

The "clean” product has no dependencies, so it always executes: "make
clean" removes product(s) and intermediates (object files)

Building Software: the make Utility

e Additional targets

o Rules that effect other changes to the build products et al.

e After all of that, what does this program actually do??7??
e We're now done with the basics of Makefiles

Building Software: the make Utility

e Multi-tier source projects — a library and an executable
Encapsulate global definitions in separate files

Building Software: the make Utility

e Multi-tier source projects — a library and an executable
o Encapsulate global definitions in separate files

Js = libprintargv my_program

For each word in SUBPROJS, run the maxe command in
a subdirectory of that name — no target cited = default

or SUBPROJ in $ (SUBPROJS

UBPROJ in §$ (SUBPR

Building Software: the make Utility

e Multi-tier source projects — a library and an executable
-1ude command inserts another file's content at that location

Building Software: the make Utility

e Multi-tier source projects — a library and an executable
The in de command inserts another file's content at that location

The ar utility creates/updates a static archive, a single
file containing (in this case) the object intermediates

e Astatic library is just a special file containing a collection of object code files
emitted by a compiler
e The code in the static library is added directly to any executable that links
against it — in contrast to shared libraries which only add a reference to the
executable
o When using shared libraries, the library must be present BOTH at build
and run time; a static library is not needed at run time

Building Software: the make Utility

e Multi-tier source projects — a library and an executable
de command inserts another file's content at that location

e Astatic library is just a special file containing a collection of object code files
emitted by a compiler
e The code in the static library is added directly to any executable that links
against it — in contrast to shared libraries which only add a reference to the
executable
o When using shared libraries, the library must be present BOTH at build
and run time; a static library is not needed at run time

Building Software: the make Utility

e Exercise: let's add an install target to the build infrastructure
1. Variables: use a variable named prer1x for the base install path
m Default to /usr/1local
2. Add an "install target to Makefile that invokes make install in subdirectories
3. Add an "install" target to subdirectories' Makefile
m libprintargv
e Copy header file to s (PREFIX)
e Copy static library to s (PREFIX) /1ib
m my_program
e Copy executable to s (PREFIX) /bin

Building Software: the make Utility

1. Variables: use a variable named
PREFIX for the base install path

Building Software: the make Utility

Variables: use a variable named
PREFIX for the base install path

Add an "install’ target to Makefile that
invokes make install in
subdirectories

Building Software: the make Utility

Variables: use a variable named
PREFIX for the base install path
Add an "install’ target to Makefile that
invokes make install in
subdirectories
Add an "install” target to
subdirectories' Makefile

o libprintargv

Building Software: the make Utility

Variables: use a variable named
PREFIX for the base install path
Add an "install’ target to Makefile that
invokes make install in
subdirectories
This will fail because the destination directories do not
necessarily exist!

O Luoprintargv

e Could just also include "mkdir" commands in the "install" recipe, but why not
leverage make dependencies to ONLY do so when necessary?

Building Software: the make Utility

Variables: use a variable named
PREFIX for the base install path
Add an "install’ target to Makefile that
invokes make install in
subdirectories
Add an "install” target to
subdirectories' Makefile

o libprintargv

Building Software: the make Utility

Variables: use a variable named
PREFIX for the base install path
Add an "install’ target to Makefile that
invokes make install in
subdirectories
Add an "install” target to
subdirectories' Makefile

o libprintargv

my_program

TARGET)

$(RM) $(TARGET) $ (OBJECTS

Building Software: the make Utility

Give it a try!

home,

1001
uni

libprintargv

1m -lprint

Building Software: the make Utility

Building Software: the make Utility

Give it a try!

e PREFIX
home/1001

rogram a

Building Software: the make Utility

e \What if we "change" a source file?

e The "install" target doesn't just install, it rebuilds some of the underlying
components — what causes "make" to do that??
o Since the "install" targets depend on the products, when changes
affect those products "make" triggers those actions first

Building Software: the make Utility

e \What if we "change" a source file?

§ The single source file is recompiled, yielding a new printargv.q Which
causes the static library to be updated and installed

tmp
ring dire

Building Software: the make Utility

What if we ‘change" a source file?

°h libprintargv

libprintargy -lm -lprint

The change to the static library causes my programto be relinked — why
is this necessary?

GNU autotools

GNU autotools

e \Writing and maintaining Makefiles by hand can become cumbersome
A lot of what we embedded in Makefile.inc and Makefile.rules is likely common to
almost all projects
A lot of what we did by hand could be automated

m For each source file, determine on what other files it depends (e.g. headers)
m Eg gce .. -Mvp .. to emit make-style dependency files

GNU autotools

e \Writing and maintaining Makefiles by hand can become cumbersome
o Alot of what we embedded in Makefile.inc and Makefile.rules is likely common to
almost all projects
A lot of what we did by hand could be automated
m For each source file, determine on what other files it depends (e.g. headers)
m Eg gce .. -Mvp .. to emit make-style dependency files

c-2//libprintargv -g -03 my

GNU autotools

e \Writing and maintaining Makefiles by hand can become cumbersome
A lot of what we embedded in Makefile.inc and Makefile.rules is likely common to
almost all projects
A lot of what we did by hand could be automated

m For each source file, determine on what other files it depends (e.g. headers)
m Eg gce .. -Mvp .. to emit make-style dependency files

e Compilers (toolchains) have major differences

Detect which toolchain is being used, adapt behavior as a result

m E.g automatically generate a Makefile.inc to match the build environment

o Detect third-party and OS libraries, functions within them, and adapt accordingly
m Linuxprintf () behaves differently than Mac OS X printf ()

e The Intel Fortran compiler has different flags versus GCC versus AMD versus

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

e Name and version of project in AC_INIT

e AC_PROG_CC activates C language handling

e AC _CONFIG_HEADERS writes automake build environment info as macros
to to template config.h.in

e AC_CONFIG_FILES turns a Makefile.am template into template Makefile.in

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

e Generates configure script

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

[OPTION] .

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

e Specify the C compiler to use with the "CC" environment variable

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

1
intargv.Tpo -c -0 printargv.o ..

.deps/my_program.Tpo -c -0 my_program.o ../my

3/build-intel’

e Specify the C compiler to use with the "CC" environment variable

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

e Specify the C compiler to use with the "CC" environment variable

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

.0 -MD -MP -MF

MD -MP -MF

src-3/build-intel"

e The "distclean" target removes the build environment that configure generated
e The —prefix option behaves as our PREFIX variable did back in the previous
directory's Makefile infrastructure

GNU autotools

e Solution: provide a higher-level description of what's heeded in the build

environment, let the computer solve for the variables
o GNU autoconf uses configuration files and templates written in the M4 language

e The "distcheck" produces a distributable software package with the configure
script and all infrastructure files

GNU autotools

e This barely touches on the scope of autoconf
Many resources online — not all of them easy to understand
e Main caveat is portability
o 100% tied to make build system
Originated on GNU Linux systems
Has been ported to other operating systems, but compatibility varies between releases
m Aschanges are made to an OS, older autoconf tools may no longer work properly
Changes to compilers, new compilers, must be explicitly handled
m Newer releases expand coverage of new, sometimes eliminate coverage of old

CMake

e To address the issues with autoconf
Use a simpler, more easily-understood language to define build environment
o Allow for build systems other than just make
Portable between Linux/Mac/Windows with usage held in common

CMake

e To address the issues with autoconf
Build system description created in cMakeLists. txtfiles

CMake

e To address the issues with autoconf
e Build system description created in cMakeLists. txt files

CMake

e To address the issues with autoconf
e Build system description created in cMakeLists. txt files

An executable target named "'my_program® has ingredients
"'my_program.c" and "printargv.c"

CMake

e To address the issues with autoconf
Build system description created in cMakeLists. txtfiles

The "'my_program’ target is installed by copying its products into a
directory named "bin" under the installation prefix directory

CMake

e To address the issues with autoconf
e Build system description created in cMakeLists. txt files

INSTALL PREFIX=/tm

m.dir/my
m.dir/pr

e Interesting naming scheme — don't drop the original extension (.c) but append
the object extension to it (.c.0)
o Preserves some sense of that language the original source was!

CMake

e To address the issues with autoconf
e Build system description created in cMakeLists. txt files

CMake

e To address the issues
e Build system descript

are: None Debug Release RelWi

e Build type is used to determine what flags to pass to the compiler for
optimization

CMake

e To address the issues with autoconf
Build system description created in cMakeLists. txtfiles

prc
les/my_program.dir/printargv. 3 y_program.dir

ogram.dir/print

CMake

e To address the issues with autoconf
Build system description created in cMakeLists. txtfiles

rogram.dir/print s/my_program.dir

gram.dir/my_program.c.o.dc
ogram.dir/printar

dir/pri

e Recall the "MD" flag was used to emit dependency rules for the sake of make
o The "MF" option specifies to what file the rules should be written

CMake

e To address the issues with autoconf
Build system description created in cMakeLists. txtfiles

$((4%10)) b c

CMake

e Multi-directory projects
Each directory gets a CMakeLists.txt file defining the build therein
o Parent directory CMakeLists.txt must reference the sub-directory with the
directory () command
Example 5 implements a multi-directory project in CMake v3.x versus the older v2.x

language as in Example 4

CMake: Example 5

1

Top-level CMakelists.txt

a.

All compile statements should
reference the libprintargv
directory for header search
Both source subdirectories
added

ration p

ogram build with CM

CMake: Example 5

1.
2.

Top-level CMakelists.txt
libprintargv

a.

Create a library target, shared or
static based on value of
BUILD_SHARED_LIBS variable
Associate the header file with the
target (for the sake of installation)
Library install destination may
vary by system (lib, lib64)

CMake: Example 5

1. Top-level CMakelLists.txt
2. libprintargv
3. my_program
a. Create an executable program
b. Link the program against the
printargv target (defined in
libprintargv)

CMake: Example 5

Build optimized with GCC 12.2, install to /tmp/abc:

un

mkdir build-

nfiguring
\erating done
5 /home/1001/sv

CMake: Example 5

Build optimized with GCC 12.2, install to /tmp/abc:

ir/printa

my program.dir/my program.c.o

CMake: Example 5

Build optimized with GCC 12.2, install to /tmp/abc:

printa

alling:
runtim

>/abc/1ib64/libprintarg
lude
~lude/printar

CMake: Example 5

Alternative: do not embed “rpath” in the my programexecutable

tmp

CMake: Example 5

Alternative: do not embed “rpath” in the my programexecutable

tmp/abc/1lib64 /tmp/abc/bin/m; m {a,b}{0,1}

CMake: Example 5

Alternative: rebuild with debug enabled, use debug library at runtime

.dir/print

ogram.dir/my

it printar

e The executable in /tmp/abc is still the optimized build, but the shared library is
a debug build

CMake: Example 5

Alternative: override embedded library search path at runtime

p ./libprintargv/libprintargv.so /tmp/abc/lib64/libprintar
1ib64 embedded in the

.darwin build-gcc-12.2]$ my program {a,b}{0

/tmp/abc/1lib64/1libprintargv-d > my_program {a

b0
bl

G: exit printargv

e Pre-loading brings all of the cited libraries' symbols into memory so that after
the executable is loaded NONE are undefined — which would trigger the

library search procedure
e Special debugging libraries, for memory management operations for example,

are often loaded this way

Runtime Environment

Runtime Environment

e |n Example 5 several environment variables were leveraged
PATH: colon-separated list of directories to search for executables
o LD_LIBRARY_PATH: colon-separated list of directories to search for shared libraries
Others (e.g. MANPATH) provide other search paths

Runtime Environment

e |n Example 5 several environment variables were leveraged
PATH: colon-separated list of directories to search for executables
o LD_LIBRARY_PATH: colon-separated list of directories to search for shared libraries
Others (e.g. MANPATH) provide other search paths
e Compiled object code is assembled into an executable by a linker
Resolves named objects (functions, variables) to addresses
o Addresses may be present in the executable OR a reference to a shared library

Runtime Environment

e |n Example 5 several environment variables were leveraged
PATH: colon-separated list of directories to search for executables
o LD_LIBRARY_PATH: colon-separated list of directories to search for shared libraries
Others (e.g. MANPATH) provide other search paths
e Compiled object code is assembled into an executable by a linker
Resolves named objects (functions, variables) to addresses
o Addresses may be present in the executable OR a reference to a shared library
e \Xhen the program is executed, references to shared libraries are resolved

by the runtime linker
Embedded rpath(s) checked
Paths in LD_LIBRARY_PATH checked

Runtime Environment

e Default paths for installed software components in Linux/Unix
¢ in: User-accessible executables
. privileged user-accessible executables
54: shared libraries
helper programs/libraries associated with an executable or library
re/man; Man pages
O ir le: header files (for software development)
° autoconf and CMake often leverage the same hierarchy for installs
Clear categorization of components in both OS and third-party software
o Default Linux install prefixes:
| OS = /usr
] Add-ons = /usr/local

Runtime Environment

e Default paths for installed software components in Linux/Unix
¢ in: User-accessible executables
. privileged user-accessible executables
54: shared libraries
helper programs/libraries associated with an executable or library
re/man; Man pages
o I 1e: header files (for software development)
° autoconf and CMake often leverage the same hierarchy for installs
Clear categorization of components in both OS and third-party software
o Default Linux install prefixes:

m OS-/usr How can we install multiple versions/variants of the my program
m Add-ons-=/usr/local executable in /usr/1ocal??

e Add a suffix to the my_program name, such as my_program — hyphen
—v1.0
o The same suffixing must be used on shared libraries accompanying
the program so they can be versioned

Runtime Environment

e Naming suffixes may not be supported by all software build environments
Our projects do not support adding -v1.0 to the executable, library, and header names
e |solate a version/variant of the software in its own installation root
o The --prefix option in autoconf; cMake 1NsTALL paTH in CMake
On a Linux system, the components are separated into the usual component paths
B Dbin, 1ib, etal
e Use a versioned-package hierarchy:

1y>/<pack >/<version-or-variant-name>

Runtime Environment

e Where will components be found?
o User executables: /or

Libraries: /opt/shar
Man pages: /opt/share 5 .
Development headers: /op nmpi/4.1.5- . clude

« To use this software, envwonment variables must be augmented
o Add respective directories to PATH, LD_LIBRARY PATH, MANPATH
For the sake of development (autoconf, CMake, and others)
| Add "-1/0p sha enmpi/4.1.5 2

m Add"-L/ox enmpi/4.1.5

Runtime Environment

e Where will components be found?
o User executables: v ‘

Libraries: /ox
Man pages:

Many software products will suggest these environment variable
changes or other environment alterations should be added to the
user's ~/.bashrc Of ~/.bash_login file, for example.

Do not follow this advice!

Runtime Environment

e \Xhy not alter shell login files?
Whatever is present in the shell login files affects every shell on the cluster

m Not just your login shell — every job shell, too
PATH=/hor 1001/sw/pkg/2/bin: /ho 1001 kg/1l/bin:..
m Once you've added version 2, how do selectively reference version 1?

v/pkg/2/1ib:/home/1001 >r pkg/1/1lib:..

m [f same library is present in both — with e.g. alternative features — the runtime linker

may not find the correct copy
Python virtual environments (virtualenvs) are particularly bad

m Many will contain libraries and executables that override what the OS provides

m In some cases an entire development runtime is embedded (e.g. Ubuntu-style GNU
libraries)

e OS commands may not work with the overriding library versions

Runtime Environment

e \Xhy not alter shell login files?

Whatever is present in the shell login files affects every shell on the cluster
Not just your login shell — every job shell, too
home/1001 >kg/2/bin: /home/1001 kg/1/%k

What's the alternative?

Keep all shells as minimally-altered as possible and make changes
on-demand, only as necessary to the situation.

When you need to use /home/1001/sw/pkg/1, add its directories to u-style GNU
PATH, LD_LIBRARY PATH, etC.

VALET

e Similar to the popular modules environment management
e A package definition file describes environment alterations associated with

one or more versions/variants of a package
o Additions to PATH, LD LIBR2 \TH, MANPATH
o Changes to arbitrary environment variables
Define command aliases
Execute (source) shell scripts
Load other packages — dependencies — into the environment, too

VALET

Similar to the popular modules environment management
A package definition file describes environment alterations associated with
one or more versions/variants of a package

How are package definition files found?
Default paths:
m |T RClI managed software: /opt
m User managed: -
Value of varLeT paTH behaves like pa
m Added by workgroup:
m Users can add their own paths
(] export VALET PATH="/home/] sw/valet ET PATH"

e By "variants" | mean multiple copies of the same version with different build
options — like compiler choice — or with alternative parameterizations

VALET

e How are package definition files created?
YAML (YAhoo Markup Language) is the preferred format
m JSON (JavaScript Object Notation) and XML (eXtensible Markup Language) available
but not recommended
File should be named <pkg-id>.vpkg yaml
o Document is structured with default actions and a dictionary of per-version actions
Example presented here is in unix-so : valet-2.1/yaml

VALET

e Package-level details
o The is the directory that

contains all versions/variants of the

package

The actions is a list of alterations to

apply to the environment
Treat bt ONF_PATH aS a
colon-delimited list (like pATH)
and add a value to the list
The value to add is the etc
directory inside the directory
containing the version/variant of
the package

e No tabbed whitespace is allowed in YAML, only regular space characters

VALET

e \ersion-level details

(@)

A version prefix directory can be
specified explicitly or it is implied —
the version id is appended to the
package's prefix directory

[/h 1 dummy /0.1
The dependencies is a list of other
versioned package ids that are
required by this versioned package

m The dummy program was

compiled with GCC 12.2

VALET

A default version can be explicit or
implied
A version id can have feature tags
o Comma-separated list of strings
occurring after a colon
Unordered: "ab.c'=="b,ca"=="c,ab"
Implicit directory name includes the
tags: e.g. 0.1-intel
A version can be an alternate
name for another version id
an alias

0.1 (compiled wi

VALET

e 'l don't see any mention of abin

directory to add to paTH.."

o VALET automatically checks for
standard Linux component directories
and adds them to the appropriate
environment variables

m executables, libraries, man
pages, etc.
Other paths can be explicitly specified
m Absolute paths
m Paths relative to the version's
prefix directory

VALET

e 'l don't see any mention of abin

tvAamntAar s dqA AAA FA ~7mrr "
dir

The automatic detection of standard
component directories means many
package definitions can be relatively
simple — like pmix shown here.

fpages, eLc.
o Other paths can be explicitly specified
m Absolute paths
m Paths relative to the version's
prefix directory

e It can be very useful to examine the package definition files that IT RCI
maintains to gain a better understanding of VALET

VALET

"How do | check if my package
definition is valid?"

o The x command validates
the file and prints the parsed definition
if successful
If not successful, information is
provided re: at which line the error
occurred or what convention was
violated
Note the implicit prefix directories are
displayed
Copy/move the filetoeg. ~/ .
to install

VALET

e 'How do | check what packages

are available?”
o The y_list command
o Parsable package definitions in each
(implicit and explicit) directory have
their package id shown

VALET

e 'How do | check what versions or
variants of a package are

available?"
o Thev command

VALET

"How do | add a versioned
package to the environment?”

The y_devrequire cOmmand
selects the development context

m Additional changes are made to
€.0. CPPFLAGS, LDF etc.
"How do | check what packages
have already been added?”
The vpkg ry command

VALET

e 'How do | undo the changes
made by vpkg require Of
vpkg devrequire commands?"
The < 1b command
m No arguments = remove the last
set of changes
Integer argument remove
the last <> sets of changes
“all" = remove all sets of changes

VALET

"How do | undo the changes

N~A~AA N

i A~

When using vpkg devrequire, each
package's prefix directory is added to an
environment variable, <pkg-id> PREFIX.

the last sets of changes

“all" = remove all sets of changes

The prefix variables are very useful in directing autotools and CMake where to
find dependencies

VALET

e Multiple versioned package ids
can be specified in a single
command

o A package's default version is
selected with the default version id
Any conflicts or errors result in the

entire set of changes' being rolled
back (not applied)

VALET

Multiple versioned package ids
can be specified in a single

command
o A package's default version is

selected with the default version id

Any conflicts or errors result in the

entire set of changes' being rolled

back (not applied)

m Ignoring conflicts may produce

runtime errors!

It is always best-practice to minimize

the number of sets of changes made

to the environment.

valgrind

J

onment

0 r/4.1.3

In Summary

In Summary

1. Adopt a hierarchical organization of software
<base-dir>/<p T 1e>/<v r-variant
can be anywhere, but common locations are:

(for personally-managed software)
(for software shared by whole workgroup)

In Summary

1. Adopt a hierarchical organization of software

2. Adopt the Unix/Linux component directory layout
bin, 1ib, include e/man, etc.
o This often happens by default for software built via autotools or CMake

In Summary

1. Adopt a hierarchical organization of software
2. Adopt the Unix/Linux component directory layout
3. DO NOT install software by altering login files!

.bashrc, .bash profile — hands off!

In Summary

Adopt a hierarchical organization of software
Adopt the Unix/Linux component directory layout
DO NOT install software by altering login files!

Use VALET to manage installed software
If you've followed 1. and 2. then this is much easier!

In Summary

Adopt a hierarchical organization of software
Adopt the Unix/Linux component directory layout
DO NOT install software by altering login files!

Use VALET to manage installed software

When developing software
o Avoid writing build scripts: autotools, CMake, et al. will always do a better job
Relocatable: write software that has no fixed installation directory
Flexible: write software that is configurable at run time, not compile time
Batchable® write software that requires no interactive input

! Ves, | made that w vord up. Copyright © Jeffrey Frey, 2024

In Summary

Adopt a hierarchical organization of software
Adopt the Unix/Linux component directory layout
DO NOT install software by altering login files!

Use VALET to manage installed software

When developing software

Never be afraid to seek help..

.after you've exhausted other options: web search, documentation

